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ABSTRACT
We introduce LLMD1, a large language model (LLM) designed to
analyze a patient’s medical history based on their medical records.
Along with domain knowledge, LLMD is trained on a large corpus
of records collected over time and across facilities, as well as tasks
and labels that make nuanced connections among them. This ap-
proach is critical to an accurate picture of patient health, and has
distinctive advantages over models trained on knowledge alone,
unlabeled records, structured data from electronic health record
(EHR) aggregators, or records from a single health system. Today,
LLMD is deployed to support virtual care, care coordination, and
the curation of datasets behind 60+ research studies, including data
submitted to the FDA.

The recipe for LLMD first continues pretraining a foundational
model on both domain knowledge and the contents of millions of
records. These span an average of 10 years of care and as many as
140 care sites per patient. LLMD is then instruction fine-tuned on
structuring and abstraction tasks – the former jointly identify and
normalize document metadata, provenance information, clinical
named-entities, and ontology mappings, while the latter roll these
into higher-level representations, such a continuous era of time a
patient was on a medication. LLMD is deployed within a layered
validation system that includes continual random audits and config-
urable review by experts, e.g. based on uncertainty, disease-specific
rules, or end use-case. This provides feedback to improve LLMD
and fine-grained control over data quality for a spectrum of needs.

LLMD exhibits large gains over both more-powerful general-
ized models and domain-specific models. On medical knowledge
benchmarks, LLMD-8B achieves state of the art accuracy on Pub-
MedQA text responses, besting orders-of-magnitude larger models.
On production tasks, we show that LLMD significantly outperforms
all other models evaluated, and among alternatives, large general
purpose LLMs like GPT-4o are more accurate than models empha-
sizing medical knowledge. We find strong evidence that accuracy
on today’s medical benchmarks is not the most significant factor
when analyzing real-world patient data, an insight that validates
our approach and has implications for future medical LLMs.

1 INTRODUCTION
LLMD is a large language model (LLM) for understanding and ana-
lyzing a patient’s medical history. Today, it is deployed to power
patient- and research-facing products offered by PicnicHealth. LLMs
represent an astonishing breakthrough in Artificial Intelligence
(AI) [1–3], and exhibit nuanced pattern matching and informa-
tion recall capabilities. In the medical domain, LLMs fine-tuned on

1LLMD is a portmanteau of LLM (Large Language Model) and MD (Medical Doctor)
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Figure 1: Data from a patient with Multiple Sclerosis (MS). Their
health information spans 27 years of care, 705 visits to 40 special-
ist providers, and 5 health systems in 2 states. Once longitundinal
records are structured, we can abstract measurements and drug eras
to intuitively model this patient’s care journey.

domain knowledge can appropriately respond to licensing exam
questions and patient queries [2, 4–6]. Techniques like Retrieval
Augmented Generation (RAG) and Chain of Thought (CoT) suggest
paths to deployment in applications that demand trustworthy out-
puts, e.g. by citing evidence or explaining responses [7, 8]. Building
on this promise, this paper presents an LLM designed for use cases
requiring a detailed understanding of patient health at the highest
accuracy standards.

Today, narrative text in medical records is the richest source of
patient health information available. However, tapping into it re-
mains difficult due to important patient privacy concerns, technical
barriers to access, and the difficulty of modeling record contents [9].
Compounding these issues, longitudinality matters: information
captured in records over time and across facilities is critical to an
accurate picture of patient health. As one example, in a dataset of
several thousand hemophilia patients, we found contradictory diag-
noses of disease subtype in the records of 30% of patients. For them,
an LLM answering even simple questions about their primary con-
dition requires access to several records along with the intelligence
to weigh information based on its provenance and connections to
other evidence.
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LLMD does just that, based on a training dataset that combines
medical knowledge with labeled longitudinal records from the Pic-
nicHealth platform. This platform powers patient-centric tools for
virtual care, care coordination, and therapy development, in part
by retrieving and managing records on behalf of patients. Data
curated in collaboration with patients includes millions of records,
collected from 100k+ sites, which span decades of care for most
patients; ultimately, LLMD has access to 350M labels from more
than 10 years of labeling by human clinical data abstractors [10].

LLMD’s recipe combines continued pretraining of llama3.1 [3,
11, 12] with task-driven instruction fine-tuning [13]. Continued pre-
training (Section 3.1) teaches the LLM the patterns and statistics
of both electronic and paper records, as well as general medical
knowledge. Structuring tasks (Section 3.2.1) teach LLMD to produce
normalized data from arbitrary record contents, while abstraction
tasks (Section 3.2.2) mimic clinicians to capture the clinical view of
patient health. We find that only once records are both structured
and abstracted can we draw insights suitable for real-world use
cases (Figure 1).

In production, LLMD’s outputs are subject to multiple layers
of validation to ensure consistency and accuracy. These include
secondary models that predict performance relative to abstractors
performing the same task, rule-based data conformance and plau-
sibility checks, and manual auditing by abstractors and clinicians.
Outputs failing at any layer are corrected or suppressed and folded
into future training data. These mechanisms are configurable based
on use case, allowing us to process low risk data quickly and effi-
ciently when appropriate, or guarantee that a abstractor verifies
data using protocols acceptable to regulators when needed.

We evaluate LLMs including LLMD on both common medical
benchmarks and on production tasks, developing strong evidence
that LLMs must be trained on complete, labeled longitudinal records
to accurately model patient health and care. In terms of benchmark
performance, shaping our continued-pretraining process towards
the PubMedQA benchmark leads LLMD-8B to achieve state-of-
the-art text responses, beating both general and domain-tailored
models with much larger parameter count. But we observe that
many models struggle to leverage medical knowledge when they
must contend with messy real-world records. This effect is most pro-
nounced when we analyze performance on production structuring
and abstraction tasks. We show that LLMD significantly outper-
forms all other models evaluated and that among alternatives, large
general purpose LLMs far outperform those emphasizing medical
knowledge. This dynamic – that accuracy working with records is
only partly driven by an LLM’s medical knowledge – validates the
importance we place on both pre-training and detailed instruction
fine-tuning on real records, while demonstrating an important gap
facing LLMs developed for real-world medical uses.

This paper proceeds as follows: Section 2 describes the Pic-
nicHealth platform, our source for training data as well as our
target environment for deployment. Section 3 introduces our con-
tinued pretraining and instruction fine-tuning approaches, while
describing our training dataset and context generation procedures.
Section 4 discusses validation mechanisms. Section 5 evaluates
LLMD against alternatives on common benchmarks, tasks pulled
from our production data, and investigates performance on infre-
quent but clinically important long-tail concepts.

Corpus Token
Count

% Training
Samples

Electronic Records 16B 59.5%
Paper Records 9B 32.3%
PubMedQA 758M 2.7%
PubMed PMC (Journal Articles) 290M 1.0%
Ontologies 49M 0.2%
Medical Knowledge Resources 1.2B 4.4%

Table 1: We continue to pretrain a foundational model using records
and medical knowledge sources. This process adapts the model to
the data distributions of medical records, freeing us to more flexibly
and directly focus downstream training on specific tasks.

2 MEDICAL RECORDS ON THE
PICNICHEALTH PLATFORM

PicnicHealth works with patients to retrieve and manage their
medical records, regardless of the format they are in or the facility
holding them. This includes electronic records as well as paper-
based records. Paper records are of particular importance for visits
to providers practicing outside of large health systems, for histori-
cal records produced before Electronic Health Records (EHRs) were
ubiquitous, and for facilities whose systems impede sharing. Pic-
nicHealth’s platform is format-agnostic under its base case support
for processing physical copies of records. It is also facility agnostic
based on the legal right patients have to access records on request.

By building a complete, longitudinal picture of one’s health,
PicnicHealth is able to offer compelling services to both patients and
researchers. For patients, PicnicHealth offers products for virtual
care, care coordination, and records-management. For researchers,
PicnicHealth offers products to improve the speed, flexibility, and
cost of observational studies supporting new therapies by directly
engaging with willing patients.

3 TASKS & TRAINING DATA
This section describes how we build LLMD, including the details of
our tasks and training data.

3.1 Continued Pre-Training
Table 1 shows the breakdown of the dataset we use to continue
pretraining a foundational model using a large unlabeled corpus.
This step follows the same training configuration as the founda-
tional model, e.g. next-token prediction for Llama models. The
primary purpose is to adapt the foundational model to the patterns
of medical records, while imbuing it with key information needed
by downstream tasks [11, 12]. Our dataset consists of 28B tokens,
approximately 90% sourced from records and 10% representing med-
ical knowledge. Along with widely-available sources for general
medical knowledge, we include two data sources supporting Pub-
MedQA – the PubMedQA training dataset enriched with CoT, and
papers from PubMed Central – but none directly supporting other
benchmarks. This deliberate choice shapes LLMD to PubMedQA
for the results in this paper, allowing us to analyze how well knowl-
edge transfers to other benchmarks and to map out the relationship
between accuracy on benchmarks and records-processing.
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3.2 Instruction Fine-Tuning
Any task that we use to process records can be performed by either
a human abstractor using software developed internally or by our
LLM. Data generated by abstractors is used for LLM training, as
well as model auditing, label correction, and inter-rater reliability
studies against clinicians.

We categorize tasks into two types: structuring and abstraction:

3.2.1 Structuring Tasks. Once retrieved, the challenge of turning
medical records into usable, reliable data is daunting [14, 15]. Issues
found in their pages include contradictions, errors, omissions, and
even notoriously difficult-to-read handwriting for paper records.
Pervasive problems like the misdiagnoses in Section 1 can happen
for reasons as mundane as a provider choosing the wrong option
from a drop down list in EHR software. Or, a Medication List section
that is intended to be a universal source of truth may combine
patient recollections with provider sourced data. Even aligning
data representing the same real-world concept is a challenge, and
though ontologies such as SNOMED, RxNorm, and the ICD standard
are intended as solutions, coding standards change over time, and
differ across facilities and providers [16–18].

For all of these reasons, getting data out of records and into a
structured form suitable for analysis – in our case, modeled after the
OMOP Common Data Model – requires more than just digitization
for paper records or parsing for electronic records. Our structuring
tasks implement the following steps (Figure 2):

• OCR/CDA Parsing - Accurate text is critical to all down-
stream processing. For paper records, we apply an OCR
model trained on 6.2B words and bounding boxes, captur-
ing the layouts, styles, artifacts, and language common in
our records. For electronic records, we parse data in the
Clinical Document Architecture (CDA) format to access
text directly [19].

• Document Labeling - We tag all records with document-
level metadata. This includes document boundaries, e.g.
since facilities often consolidate many visits into a single
paper record, as well as attributes like visit length and type,
provider identity and specialty, and facility names.

• Sectioning -We subdivide documents into sections, which
capture data provenance. This step includes finding sec-
tion boundaries based on arbitrary contents and, for paper
records, physical layouts. We code types such as History of
Present Illness, Chief Complaint, Medication List, etc.

• Mentions-Processing - Similar to named entity recog-
nition (NER) [20], we identify clinical concepts, their at-
tributes, and the relationships that link them. We do this
for medications, lab tests, vital signs, procedures, and con-
ditions. Example attributes include reference ranges for
labs, doses for medications, etc. We then align the resulting
entity mentions to ontologies appropriate for their domain.

3.2.2 Abstraction Tasks. While structured data reflects what is
written, our abstracted data represents the clinical view of a patient’s
medical history. For example, a structuring task will recognize and
normalize every mention of a drug, but those named-entities alone
are often not enough to confidently say when a patient started

the drug, when they stopped, and why [21]. This is apparent in
Figure 3, which shows snippets used to abstract the treatment
course for a medication. We see that the most recent note captures a
discussion of bladder control difficulties alongside two medications.
It definitively notes the date that the drug was stopped, which is
confirmed by the prior note. However, only the oldest note calls
out worsening side effects to give us the stop reason, while leaving
unclear the date of final administration. In this example, all three
notes must be examined together to model the treatment course
– no one note nor its structured data tells the full story – and this
need motivates abstraction.

New abstraction tasks are defined by configuring the desired
output, the input source material, and a protocol to follow. The
output is a target concept, e.g. a drug code, and one of three data
types:

• Distinct variables, such as a primary diagnosis.
• Multi-occurrence variables, such as episodic pain crises

or clinical relapses.
• Era variables that capture spans of time associated with a

clinical status, such as when a patient was on a medication.
The inputs define what context from the patient’s full set of records
to consider when completing the task. Inputs are configured based
on document and visit metadata, such as document type, date, and
provider specialty, as well as search hits for concepts related to the
output. The protocol consists of definitions, guidelines, and exam-
ples to mold clinical expertise into a rigorous, repeatable process.
They are designed collaboratively by clinicians and researchers,
and can include multiple rounds of training with abstractors, as-
sessment, feedback, and revision.

In our prior example, drug era abstraction would be instanti-
ated with the drug’s associated RxNorm code and an era datatype;
source material would be configured to look to Progress Note sec-
tions from neurology documents, as well as search hits for any drug
associated with Multiple Sclerosis (MS); and the protocol would pro-
vide guidelines for navigating ambiguities, such as contradictions
between primary care and specialist providers.

Our approach to designing abstraction tasks started from the ob-
servation that clinicians intuitively abstract medical information as
they read records. Through user study, we discovered that the key
to abstracting a nuanced treatment course lay in supplementing
structured data with a provider’s clinical knowledge and prove-
nance information to contextualize and filter what was written.
In this way, abstraction tasks enable us to train an LLM to mimic
clinicians: when a new task is launched to abstractors at scale their
outputs become the labels for training, the configuration of input
source material is the basis for LLM context generation, and the
abstraction protocols provided to abstractors become the starting
point for task prompts.

3.2.3 Fine-Tuning Dataset. Table 2 further categorizes the 86 task
types used to fine tune LLMD today. Figure 4 provides an example
prompt for drug structuring, while Figure 5 provides an example
for drug era abstraction. Each task is paired with labels collected
from our corpus.

Many tasks look longitudinally across several records. On aver-
age, patient data spans 10 years of care, and 20 years at the 90th
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Figure 2: The workflow we implement to structure and abstract records sourced electronically and on paper.

### Sn i pp e t s
7293 − P rog r e s s Note on 2019 −12 −02 Neurology , found concep t s [ drug_1 ] :

HISTORY OF PRESENT ILLNESS :
f i r s t _ n ame was l a s t seen on 5 / 3 1 / 2 0 1 9 f i r s t _ n ame has de c i d ed t h a t s i n c e s t a r t i n g the DMT, she has been on a " downh i l l s l i d e " . She has r e c e i v e d 5 dose s f i r s t _ n ame

r e p o r t s f e e l i n g worse a f t e r each dose and i s overwhelmed by the s i d e e f f e c t s . She p r e s e n t s today us ing her walker to a s s i s t with

7296 − P rog r e s s Note on 2020 −12 −09 Neurology , found concep t s [ drug_1 ] :
HISTORY OF PRESENT ILLNESS :
f i r s t _ n ame was l a s t seen on 0 6 / 0 2 / 2 0 2 0 f i r s t _ n ame_1 her most r e c e n t dose o f drug_1 was on 0 5 / 3 1 / 2 0 1 9 , she has been o f f drug_1 s i n c e t h a t t ime . f i r s t _ n ame f e e l s t h a t

with oxybutyn in her b l a dd e r c o n t r o l i s b e t t e r a t n ight , but she s t i l l e x p e r i e n c e s f r equency ( p robab ly

7305 − P rog r e s s Note on 2021 −06 −30 Neurology , found concep t s [ drug_1 ] :
f i r s t _ n ame was l a s t seen 6 / 0 2 / 2 0 2 0 . She has been o f f drug_1 s i n c e 5 / 3 1 / 1 9 , when she r e c e i v e d her most r e c e n t dose o f drug_1 . f i r s t _ n ame has some b l a dd e r urgency

f i r s t _ n ame wears i n c on t i n e n c e pads d a i l y . She t a k e s oxybutynin ER 15mg b e f o r e bed but s t i l l wakes 1−2 t imes per n i gh t to vo id . She c on t i nu e s to use s t o o l
s o f t e n e r s to he lp her move her bowels d a i l y .

Figure 3: Neurology notes provided as context to a drug era task that includes stop reason. We first turn to notes from specialist physicians
for the most definitive account of the disease. Here, the most recent two notes co-mingle a discussion of worsening bladder control with a
definitive date the patient stopped the drug. The oldest note makes a link between consistent worsening feelings and the drug, which provides
the stop reason. Only with these three notes together can we piece together the era end date and stop reason.

percentile. We use disease specific completeness definitions to deter-
mine when our data fully documents a patient’s primary condition
over time, e.g. at-least one neurology office visit per 18 months for
MS. Today, our data contains 5 years of complete documentation
per patient on average.

Our labels capture a large degree of stylistic and content varia-
tion. Records have been sourced from 100k+ care sites in aggregate,
capturing an array of different documentation tools, individual writ-
ing styles, specialties, diseases, etc. They have been both structured
and abstracted for research questions associated with 60+ study
datasets. On average, patients have records from 10 different facil-
ities, though some have data from as many as 140 covering their
course of treatment.

Data volume is substantial. Paper records average 30 pages,
though we have retrieved records as long as 24,000 pages for heavy
users of the healthcare system with complex diseases. We elec-
tronically retrieve 290 files per patient on average, and for image
data, 5,000 image slices per patient. Our full dataset contains labels

Capability # Task
Types

% Training
Samples

General Medical Knowledge 17 29%
Structuring - Metadata & Provenance 14 3%
Structuring - Conditions 18 31%
Structuring - Medications 12 9%
Structuring - Labs 7 4%
Structuring - Vital Signs 6 7%
Abstraction - Conditions 4 4%
Abstraction - Medications 8 13%

Table 2: For each stage of our structuring and abstraction processes,
we perform multiple tasks in sequence, e.g. finding vital sign names,
and then attributes for each vital sign in a second pass.

collected over approximately 10 years by a workforce of several
thousand abstractors in sum, and totals more than 350M labels.
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### S e c t i o n :
IMPRESSION :
She con t i nu e s symp toma t i c a l l y and I 'm going to r e i s s u e a p r e s c r i p t i o n f o r

p r edn i sone 1000 mg a day f o r 5 days . I am hoping t h i s w i l l q u i e t down her
symptomatology . I f she c on t i nu e s with c she w i l l c o n t a c t me . We had a long
d i s c u s s i o n about what to do f o r her . She has de c i d ed she would l i k e to sw i t ch
from Copaxone to drug_1 and I t h i nk t h i s i s a good cho i c e . She w i l l have b lood
today f o r JC v i r u s and v i t am in D l e v e l . She w i l l he lp the paperwork f o r drug_1
and I w i l l s e e her in fo l l owup in January . I have asked her to c a l l a s needed .

### I n s t r u c t i o n s :
In the s e c t i o n above , f i n d a l l unique ment ions o f t h e s e concep t s :
− Avonex ( RxNorm 153326 )
− Copaxone ( RxNorm 135779 )
− T e c f i d e r a ( RxNorm 1373484 )
− drug_1 ( RxNorm CODE)
− Zepos i a ( RxNorm 2288407 )
− d ime thy l fumara t e ( RxNorm 1373478 )
− r i t ux imab − abbs ( RxNorm 2105824 )
− t e r i f l u n om i d e ( RxNorm 1310520 )

Output a l i s t o f JSON o b j e c t s l i k e :
[

{
" concep t " : " Copaxone ( RxNorm 135779 ) " ,
" o t h e r _ f i e l d s " : {

. . .
} ,

} ,
. . .

]
With t h e s e o p t i o n a l o th e r f i e l d s :
− ANY__SUBJECT (who the mention r e f e r s to )
− DRUG__INSTRUCTION ( the f r equency a p a t i e n t i s t o t ake a med i c a t i on ; o f t e n

da i l y , every o the r day , e t c . )
− DRUG__STOP_REASON (why the p a t i e n t s topped t a k i ng the drug ( a SNOMED item

and code ) )
− DRUG__STRENGTH ( the drug dosage ; o f t e n in mgs or mg/mL)

Figure 4: This task implements clinical named entity recognition,
one of our simpler structuring tasks.

3.2.4 Task Decomposition and Context Generation. The categories
listed in Table 2 each contain multiple task templates. These arise
in part when we decompose complex outputs into easier tasks that
form dependency chains. For example, with vital signs we use one
task to first identify all vital sign names within a section, another
to find attributes given a name, and finally a last task to normalize
units and align names to an ontology. This decomposition injects
a helpful inductive bias between the measurement name and its
attributes – given “Body Weight", the model is more likely to latch
onto numbers in typical ranges for pounds and kilograms than
those for degrees Farenheit. Though simple, such induction greatly
improves tolerance to the variations and artifacts we encounter
across facilities, e.g. when tables are intermingled with narrative
text in unexpected ways.

Beyond exploiting instruction fine-tuning to shape inductive
biases, we engineer the context of each task carefully. Similar to
REALM [22] and RAG [7] we build context by finding relevant
snippets of records and concatenating them into our prompt. As
discussed in Section 3.2.2, context retrieval is configurable based
on metadata and search terms, and we implement it today using
ElasticSearch. We found that this system design struck the best
initial tradeoff between performance and flexibility, allowing us
to quickly iterate task design. In the future, we expect to explore
end-to-end training [23], though we note that it comes with more
complex system interdependencies.

4 SAFETY AND QUALITY CHECKING
Both LLMD’s outputs and abstractor labels pass through several
layers of validation before they are shown to users or included in a
research dataset. This section summarizes them.

### Sn i pp e t s
7493 − P rog r e s s Note on 2011 −06 −16 P sy ch i a t r y , found concep t s [ drug_1 ] :

use s t r e e t drugs , doesn ' t smoke ; has c a f f e i n e in a .m.
MEDICAL HISTORY I s on an ex p e r imen t a l med i c a t i on ( i n f u s i o n s o f drug_1 )
f o r MS under the c a r e o f Dr Fox and i s doing f a i r l y we l l with h i s MS .
Has had p a r t i a l

7485 − P rog r e s s Note on 2014 −02 −17 Neurology , found concep t s [ drug_1 ] :
HPI :
Mr . l a s t_name i s here f o r Camms EXT V i s i t Month 3 6 . His l a s t
drug_1 was Month 12 in 1 / 2 5 / 2 0 1 0 . Repo r t s c / o pneumonia
( s t a r t 2 / 3 / 2 0 1 4 ) . Seen by PCP . Chest X− ray abnormal . S t a r t e d P redn i sone 50
mg po qd , Zi thromax Z pak ,

7498 − Rad io logy Repor t on 2014 −02 −20 , found concep t s [ drug_2 ] :
MRI BRAIN WITH AND WITHOUT CONTRAST : 2 / 2 0 / 2 0 1 4
HISTORY : Mu l t i p l e s c l e r o s i s . There i s no i n d i c a t i o n the p a t i e n t i s on drug_2
COMPARISON : Head CT 0 3 / 1 8 / 2 0 1 1 ( Se ton Northwest Ho s p i t a l ) , r epo r t , a

p r e v i ou s o u t s i d e MRI has been

7483 − P rog r e s s Note on 2014 −08 −19 Neurology , found concep t s [ drug_1 ] :
HPI :
Mr . l a s t_name i s here f o r CAMMS Ex t en s i on V i s i t Month 4 2 . L a s t
drug_1 January 2 0 1 0 . No PE to be done today . No new symptoms ,
no r e l a p s e . In formed consen t given , a l l q u e s t i o n s answered . S igned . Copy
to p a t i e n t . No new neu r o l o g i c

### I n s t r u c t i o n s :
P r e d i c t the expec t ed drug e r a s a f t e r ob s e r v i ng t h e s e s n i p p e t s .

Use t h i s fo rmat f o r " s t a r t _ d a t e " and " end_da te " :
{ " d a t e " : " YYYY−MM−DD" ,
" p r e c i s i o n " : "DAY |MONTH| YEAR " ,
" s p e c i f i c i t y " : "KNOWN_DATE | TRUE_DATE " } .

Choose "TRUE_DATE" i f the p a t i e n t s t a r t e d or ended the drug on t h a t da t e .
Otherwise , choose "KNOWN_DATE" f o r the f i r s t or l a s t r e co rded usage o f
the drug .

Return a JSON l i s t o f drug e r a s . Each drug e ra shou ld use
the format
{

" concept_name " : " . . . " ,
" s t a r t _ d a t e " : { . . . } ,
" end_da te " : { . . . } ,
" s t op_ r e a s on " : " . . . " ,

}

For t h i s t a s k you shou ld c on s i d e r the f o l l ow i n g concep t s :
− drug_1 ( synonyms BRAND_NAME1)
− drug_2 ( synonyms BRAND_NAME2)

Figure 5: This is an example of a drug era task for medications
associated with MS.

4.1 Uncertainty-Driven Manual Review
A primary use of LLMD is to automate record processing, while
maintaining the same accuracy as clinicians performing the same
task. Even for clinicians, we observe that some records are far more
difficult to understand than others, often for complex reasons. For
example, a poor quality scan of a decades-old handwritten note
likely induces more mistakes due to confusion about the text than
the output of a modern, widely used EHR system. At the same time,
we see that modern EHRs produce large amounts of redundant
information, spreading the most important data sparsely over many
pages.

For these reasons, we train secondary uncertainty models to clas-
sify when the outputs of LLMD should be routed for additional
manual review. Today, these models are analytic classifiers, not
LLMs, and take into account features such as LLMD’s logits, its
outputs, information about input text such as OCR confidence, and
document metadata. They are trained to detect when outputs fall
short of gold standard labels. We audit the decisions of these un-
certainty models continually in production by randomly selecting
tasks for review by abstractors – the resulting dataset can then
compared to the uncertainty-model’s prediction. Should the quality
of routing decisions slip, we are able to reprocess affected data,
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while retraining or recalibrating the uncertainty model. We remark
that these models are highly accurate, though their implementation
is not discussed in detail in this paper.

Abstraction tasks for research study datasets are not processed in
a fully automated fashion today and are always routed for manual
review. This is because they are often intended for use cases that
require human verification to meet regulatory standards. For this
subset of tasks, LLMD’s abstraction outputs are instead treated as
hypotheses that can speed abstractors’ work. For these tasks, we
track LLMD’s impact on abstractor task-time for a fixed accuracy
bar, though we do not report on abstractor efficiency in this paper.

4.2 Rules-Based QC
All LLMD and abstractor outputs are subjected to rules-based qual-
ity control (QC) for data conformance and plausibility. Conformance
checks look to ensure basic correctness, e.g. that dates are valid,
codes are present in an ontology, and attributes that cannot be null
are indeed populated. Plausibility rules incorporate more clinical
and disease-specific knowledge, for example that a drug does not
start before a confirmed diagnosis date when appropriate, or that
conditions only possible in females are not associated with male
patients. When a rule violation is detected, it is logged with a ‘warn’
or ‘error’ priority level. Errors are prevented at point of entry, while
warnings are routed to an escalation workflow for manual correc-
tion or suppression. Both general and disease-specific QC rules
are created and continually expanded by a team of epidimiologists,
clinicians, and biostatisticians. An example set of plausibility rules
in production today is shown in Table 3.

4.3 Agreement and Accuracy
Labels assigned or verified by human abstractors are subject to
additional quality checking (QC) tasks that ensure consistent per-
formance over time and among abstractors [24]. For abstraction task
types, a second blinded task is performed based on a configurable
sampling rate. In cases of disagreement, the result is adjudicated
by a third abstractor. We also perform a smaller number of random
audits by clinicians with a higher level of expertise than abstractors
to ensure consistent results are indeed correct. For structuring tasks,
which involve smaller units of work and less clinical judgment, QC
tasks are not blinded and are performed by team members identi-
fied to be high performers. All QC sampling rates are configurable
by percent of data volume, by concept, by abstractor performance
level, and by study in the case of research datasets.

5 LLMD TRAINING & EVALUATION
This section presents results from a small version of our LLM built
from Meta’s Llama3.1-8B foundational model. We continue pre-
training it with one pass over the 28B token dataset in Table 1, and
then perform instruction fine-tuning using a single pass over ap-
proximately 8B tokens representing the task mix in Table 2. During
fine-tuning, we regularize using loss smoothing [25], and linearly
ramp loss from 0 to 2.0𝑒−5 over 500 steps before linearly decaying
back to 0. We evaluate the performance of LLMD-8B on medical
benchmarks and production tasks, comparing it to the best general
and domain-adapted models available.

Cond. Type Plausibility Rule Description
PNH Err PNH breakthrough hemolysis occurs

within a drug era
PNH Warn LDH collection date +/- 3 days from

breakthrough hemolysis start date
PNH Warn Acute kidney injury era has a plausi-

ble duration (> 100 days)
PNH Warn PNH drug treatment eras should not

overlap
PNH Warn Eculizumab dose should not be less

than 600 mg
Table 3: A subset of plausibility rules applied during abstraction tasks
for patients diagnosed with Paroxysmal Nocturnal Hemoglobinuria
(PNH). These rules are continually expanded by a team of epidemi-
ologists, clinicians, and biostatisticians.

MedQA

PubMedQA

Text Response Log-Prob

Llama3.1 8B Instruct 57.5% 60.7%

JSL-MedLlama-3-8B 55.5% 61.3%

LLMD 8B 54.7% 54.7%

GPT-4o 81.8% 86.0%

Text Response Log-Prob

Llama3.1 8B Instruct 67.2% 74.6%

JSL-MedLlama-3-8B 65.2% 74.2%

LLMD 8B 69.6% 69.6%

GPT-4o 64.2% 67.6%

Delta

-3.2%

-5.8%

0.0%

-4.2%

Delta

-7.4%

-9.0%

0.0%

-3.4%

Figure 6: We observe significant differences in the accuracy of most
models when scored using ranked log-probabilities compared to
their direct text responses. LLMD is trained specifically to output
correct text responses.

5.1 Common Benchmarks
To analyze accuracy on medical benchmarks, we consider both
log-probability scoring and text-response scoring. Given a prompt
question as input, log-probability scoring ranks several possible
answers in terms of the probability of emitting them as the next
set of tokens; if the correct answer has highest probability rela-
tive to other options, the model is deemed correct. This approach
is most commonly reported due to the ease of comparing LLMs
with different, ostensibly superficial, response styles, as well as its
compatibility with legacy classification models [26]. In contrast,
text-response scoring simply feeds a question into an LLM and
scores its output for correctness. This method is more difficult to re-
port because it requires bespoke system-prompt tuning and output
parsing when evaluating multiple models.

These two methods reveal different things about LLMs. Log-
probability scoring probes howwell a model learns the relationships
between domain concepts, while factoring out sensitivity to input
and output perturbations. Text response scoring provides a more
direct assessment of how an LLM might perform in production
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General Medical Knowledge
(Text Responses)

Interpreting Records
(Production Tasks & Data)

General
Purpose

LLMs
74.2% 81.8% 87.9% 88.6% 77.0%

Domain
Adapted

LLMs

69.6% 86.4% 87.0% 86.6%

MedMCQA MedQA
MMLU MMLU 

PubMedQA Structuring Overall

Llama3-8B - - - - - - 13.5% 8.1% 12.2%

Llama3.1-8B-Instruct 50.9% 56.8% 74.3% 73.4% 64.6% 61.6% 0.0% 2.0% 0.8%

Llama-3-70B-Instr* - - - - - - 28.6% 64.9% 37.3%

GPT-4o* 64.2% 44.2% 76.8% 52.0%

BioMistral-7B 37.7% 38.8% 57.4% 24.2% 34.8% 42.2% 7.5% 19.3% 13.8%

Hermes-2-Pro-7B 47.6% 42.5% 64.3% 65.6% 44.8% 49.8% 3.8% 2.6% 3.4%

JSL-MedLlama-3-8B 58.8% 55.5% 71.9% 74.8% 65.2% 62.8% 6.1% 17.3% 8.8%

MedLM* 58.3% 63.8% 82.6% 81.6% 58.2% 65.7% 1.5% 12.4% 6.3%

LLMD 8B 55.1% 54.7% 63.0% 62.2% 60.6%

Abstraction
Avg. 

(Zero Shot) (Few Shot) (Zero Shot)

* Parameter Count > 10B

Figure 7: LLMD achieves state of the art performance on PubMedQA text responses, and performs significantly better on the types of tasks
needed to structure and abstract medical records in production.

when inputs and outputs are unconstrained. A consistent relation-
ship between the two is not guaranteed and Figure 6 confirms this:
similar to recent work [26], we find that LLMs with the highest
benchmark scores are far less accurate when giving text responses
than their log-probabilities would suggest. In fact, no 8B parameter
model met the 60% bar in its text responses to MedQA colloquially
associated with passing the US medical licensing exams, despite
log-probability scoring showing that several encode the knowledge
to do so. We note that LLMD is trained based on the quality of its
text responses, minimizing the gap between scoring methods.

Focusing in on the quality of text responses, Figure 7 shows
that LLMD-8B achieves state of the art responses on PubMedQA
over all models, regardless of domain specialization or parameter
count. This result confirms the power of continued pretraining and
suggests that records themselves have content useful for improving
benchmark performance. These may include examples of medical
facts made manifest in patient assessments and test results, or
practical explanations of knowledge in the notes of providers.

We also notice two important behaviors in the text response
scores across models. First, we find that good performance transfers
less-effectively among benchmarks when scoring text responses
than probability scoring has previously suggested [27]. In fact,
several models slide below the accuracy of the Llama3.1-8B-Instruct
base model despite strong performance on one or two benchmarks.
Second, we see that general models with large parameter counts
routinely outperform domain models: on the MedQA benchmark,
llama3.1 Instruct has the best performance among 8B parameter
models, while GPT-4o bests MedLM, the most advanced extension
of the med-palm2 family.

These results support our experience that performance on medi-
cal knowledge benchmarks rarely determines the effectiveness of an
LLM when working with records in production. Even on questions
probing the same domain that have been curated of phrased differ-
ently, the tolerance to variations inherent in large production-grade
general models is more important than medical knowledge. In the
next section, when we evaluate performance on medical records
with a much higher degree of noise and variation, this effect is even
more pronounced.

5.2 Production Workload Accuracy
Our production tasks allow us to analyze the strengths and weak-
nesses of LLMs on real-world records drawn from a broad, repre-
sentative patient population. Results in this section report accuracy
against gold labels assigned and checked by abstractors.

The comparison in Figures 7 and 8 breaks model performance
out by structuring and abstraction, and provides an overall score
reflecting the task mix in Table 2. It shows that LLMD-8B handily
beats comparison models, reflecting the importance of fine-tuning
on tasks with labels when analyzing records. Consistent with the
results in Section 5.1, the next best performers are large general-
purpose LLMs. Our data further shows that the gap between these
and models focused on domain knowledge is substantial on real-
world patient data.

Examining individual responses, we observe that LLMD-8B lever-
ages both the pretraining and fine-tuning datasets to improve ac-
curacy. For example, we see structuring tasks appropriately biased
towards more plausible answers. In one representative structur-
ing task, the domain-specific JSL-MedLlama-3 model identifies a
patient’s height value correctly as “6" but improperly assigns the
“inches" unit, a choice in the LLM’s context window that is close
– inches are a valid unit for height – but implausible given the
patient age, also included as input. LLMD-8B does not make this
mistake and correctly outputs “feet" as the unit. Overall we observe
a substantially lower incidence of implausible results in the outputs
of LLMD-8B, which we attribute to training datasets that capture
many examples of measurements for people in various states of
health, at various ages, etc.

Another class of data issue that we find LLMD-8B handles better
than alternative LLMs involves the manipulation of lab test codes
and medication identifiers. We observe a significantly higher rate
of incorrect codes with other LLMs, both when they are transcribed
from inputs or recalled from LLM knowledge. Moreover, we observe
that the most powerful models like GPT-4o often produce hallu-
cinated codes in plausible formats, whereas much smaller models
produce non-conforming outputs that are easier to detect. This
complicates quality checking, and we earmark this effect – that
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Accuracy
w.r.t 

Gold Labels

LLMD-8B GPT-4o Llama3 70B 
Instruct

BioMistral 
7B

JSL-
MedLlama3-8B

MedLM
Large

Hermes 2 
Mistral 7B

Llama3.1 8B 
Instruct

Figure 8: LLMD learns intricate patterns in medical records, including the nuances to resolve conflicting information or to navigate workflow
information embedded in records.

a little knowledge can be a dangerous thing for LLMs – for further
study, while noting that multi-layered validation and consistency
checking is necessary for safe deployment of today’s LLMs.

Figure 8 also annotates some tasks based onwhether they require
nuanced reasoning germane to medical records. We include tasks in
this category that are interpretive in nature, such as those requiring
disease-specific adjudication of conflicting information. In spot
checks, we see LLMD-8B shine on these tasks, for example properly
resolving the status of a medication found in a Medication List that
was also listed as stopped in a Progress Note from the same day.
Large LLMs like GPT-4o and Llama-3-70B also perform well given
their ability to consistently latch onto plausible answers, though
LLMD wins by more often finding correct answers.

The last category we analyze – tasks that require date reasoning
– demonstrates how mistakes on mundane-seeming metadata can
lead to poor application-level behaviors. In many failure cases, we
saw comparison models confused by the meaning of dates in medi-
cal records. When looking into the records themselves, we found
dates and times documenting facility workflows, such as when
notes were written, amended, signed, or when test samples were
sent off to a lab, returned, etc. Answering straightforward questions
about medical histories at the application level requires disentan-
gling this timing information. Again we see in Figure 8 that direct
training on example data produces the best model, and also call out
this as a case where the type of medical knowledge reflected in com-
mon benchmarks is little help getting basic, fundamental questions
about a patient right.

5.3 Long Tail Performance
Finally, we report LLMD’s performance on structuring two specific
sets of labs: the top-100 most-common and 100 tests deemed by our
clinical team to be both rare and clinically important, which we
refer to as long-tail labs. An example of this latter set are measure-
ments associated with the marker panel administered to patients
diagnosed with PNH (Table 4). Given the disease’s incidence of less
than ten per million people, the frequency of these tests is very low
in most data samples, but their importance high.

In data audited over the course of April, 2024, we find precision
and recall on our top 100 labs strictly above those computed from

Measurement Name Abstracted
Variable Type

Type 2 RBC clone size Occurrence
Monocyte clone size Occurrence
Granulocyte clone size Occurrence
Total RBC clone size Occurrence
Type 3 RBC clone size Occurrence
Lactate dehydrogenase
[Enzymatic activity/volume]
in Serum or Plasma

Occurrence

Table 4: A PNHMarker Panel provides an example of infrequent but
important measurements. These tests are performed once when a
patient is diagnosed; PNH occurs in fewer than 10 in 1M people.

agreement studies between two abstractors performing manual
abstraction. This indicates that LLMD’s outputs after validation are
as-good or better than a trained human abstractor. Among the set
of long tail labs, we find that 60 of the 100 appeared more than 10
times in our audit sample – of these, 85% had an F1 score above
0.80, suggesting that performance in the long tail is good, but not
guaranteed. In practice, when we detect this, we are able to flag
sections for patients with the associated disease for manual review
by abstractors, implement QC rules to ensure we find expected
measurements, and ultimately retrain LLMD.

We have experimented both with upsampling and data augmen-
tation to shore up long tail concepts, and for both methods find that
LLMD responds smoothly. We find these dynamics supportive of
our claim that a large labeled dataset is absolutely critical to good
performance: precision and recall on these obscure concepts are
not a given, but we do see that LLMs are well-behaved enough that
model blindspots are discoverable and addressable. Our results also
highlight how important the input of clinicians is, and suggests
that disease-by-disease rollout is likely to produce incremental
generalization for medical LLMs.

6 CONCLUSION
This paper presented LLMD, an LLM capable of analyzing patient
health from data available today. Central to LLMD’s success is the
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finding is that for medical LLMs, training on real-world data is
necessary: even the most knowledgeable models struggle when
working with medical records, and dealing effectively with messy,
idiosyncratic data is the limiting factor when buildingmedical LLMs
for the real-world.

Beyond top-line accuracy, real-world medical LLMs must per-
form well on data that is important and potentially under repre-
sented in training datasets. We find ample evidence that guard rail
and validation system design is critical for even the most power-
ful LLMs known. We also find that approaches for assessing and
improving performance on long-tail data are a critical issue. For
LLMD, we address this through disease specific analysis and sys-
tems that help automate feedback from clinicians. Above all, for
future medical LLMs to consistently progress, there is a need for
more representative training and benchmarking datasets.

But, while these problems are difficult, they are tractable and
the results compelling. We showed LLMD can operate at human-
level accuracy and be used to improve patient care today. User
feedback has demonstrated patients discovering new things about
their health history, advocating for the highest standards of care
for themselves, and making better use of precious time with their
doctors. Researchers are working the same underlying data, con-
tributed by willing patients who are highly motivated to improve
treatment options for themselves and others. To date, this has pro-
duced 60+ datasets covering 50+ rare diseases, and has been the
basis for compelling evidence submitted to the FDA.
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