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ABSTRACT

This preprint introduces LLMD, a large language model (LLM) that
uses medical records to characterize patient health over time, and is
deployed today in applications that improve health outcomes and
power clinical research. Along with general medical knowledge,
LLMD is trained on labeled longitudinal medical records, giving
it unique advantages over LLMs trained on knowledge alone, on
unlabeled records, or on records from a single health system. We
show that LLMD learns to make nuanced connections in informa-
tion covering years of patient care documented across facilities,
and that these are critical to real-world accuracy.

LLMD is trained by instruction-fine-tuning a foundational model
on millions of records, spanning an average of 10 years and as
many as 140 care sites per patient. LLMD’s structuring tasks jointly
identify and normalize metadata, provenance information, clinical
named entities, and ontology mappings. Abstraction tasks then roll
this data into higher-level representations, such a continuous era
of time a patient was on a medication. LLMD is deployed within
a multi-layered validation system implementing both continual
random audits and configurable review by experts, e.g. based on
output uncertainty, disease-specific rules, or use-case. This provides
both a feedback loop to improve LLMD, as well as fine-grained
control over data quality for a spectrum of needs, from lowest cost
to regulatory-grade auditability.

LLMD exhibits large gains over both more-powerful general-
ized models and domain-specific models. On medical knowledge
benchmarks like MedMCQA and PubMedQA, LLMD-7B’s zero
shot accuracy outperforms comparable models. On real-world pro-
duction tasks, LLMD performs 2x better than GPT-4 when struc-
turing records, and 1.5x better than specialized models like John
Snow Labs’s “John" when abstracting records. Today, LLMD pow-
ers patient-facing tools for care management, as well as research
datasets behind 60+ studies, including data submitted to the FDA.

1 INTRODUCTION

LLMD is the large language model (LLM) behind patient- and
research-facing products offered by PicnicHealth. LLMs represent
an astonishing breakthrough in Artificial Intelligence (AI) [1-3],
and exhibit nuanced pattern matching and broad information recall
capabilities. In the medical domain, LLMs fine-tuned on generalized
medical knowledge can appropriately respond to licensing exam
questions and patient queries [2, 4-6]. Techniques like Retrieval
Augmented Generation (RAG) and Chain of Thought (CoT) suggest
paths to deployment for applications that demand trustworthy out-
puts, e.g. by citing evidence to support responses [7, 8]. Building
on this promise, this paper presents an LLM that closes the loop for
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Figure 1: Data from a patient on our platform with Multiple Sclerosis
(MS). Their health information spans 27 years of care, 705 visits
to 40 specialists providers, and 5 health systems in 2 states. Once
longitundinal records are structured, we can abstract measurements
and drug eras to intuitively model this patient’s care journey.

use cases requiring a detailed understanding of a patient’s health
and care over time at the highest accuracy standards.

Today, narrative text in medical records is the richest source of
patient health information available to such applications. However,
tapping into it remains difficult due to important patient privacy
concerns, technical barriers to access, and the difficulty of modeling
contents [9]. Compounding these issues, we show that longitudi-
nality matters — information spanning many records from many
facilities is critical to an accurate picture of patient health. For exam-
ple, we find contradictory diagnoses of disease subtype among 30%
of hemophilia patients in our dataset. For them, an LLM answering
even simple questions about their primary condition must be able
to weigh information from several records based who recorded it,
when, and what connections to other evidence can be inferred.

LLMD does just that. Its training combines medical knowledge
with labeled longitudinal medical records (Figure 2) from the Pic-
nicHealth platform, which retrieves records for patients and pro-
vides tools to help them manage their healthcare journey. Re-
searchers can also leverage the platform to design, monitor, and
run observational studies in collaboration with willing patients,
producing datasets that support therapy development. By bring-
ing powerful Al advances together with a scalable mechanism for



data access, active patient participation, cross-domain expertise,
and need-driven use cases, we demonstrate safe and successful
deployment of a medical LLM in the real world.

LLMD is an instruction-fine-tuned [10] version of the 11ama [3]
open-weight model trained on three categories of tasks: (1) general
medical knowledge, (2) structuring tasks that produce normalized,
validated data from arbitrary record contents, and (3) abstraction
tasks that mimic clinicians to capture the clinical view of patient
health. Only once records are both structured and abstracted do
we find it possible to draw insights from a patient’s data (Figure 1).
LLMD is trained on labeled data from millions of records, retrieved
from 100,000+ sites, covering decades of care for most patients. La-
bels for each record include metadata and data provenance informa-
tion, clinical entities, ontology mappings, and abstracted variables.
At its most granular, our training data has 350M labels from nearly
10 years of labeling by human clinical data abstractors (CDAs) [11].
For the results in this paper, we curate those labels to 5B tokens,
consisting of 4M prompt/completion pairs.

In production, LLMD’s outputs are subject to multiple layers
of validation to ensure consistency and accuracy. These include
secondary models that predict performance relative to CDAs per-
forming the same task, rule-based data conformance and plausibility
checks, and manual auditing by CDAs and clinicians. Outputs fail-
ing at any layer are corrected or suppressed and folded into future
training data. These mechanisms are configurable based on use case,
allowing us to process low risk data quickly and efficiently when
appropriate, or guarantee that a CDA verifies data using protocols
acceptable to regulators when needed.

LLMD’s direct outputs outperform comparable models on bench-
marks for general medical knowledge and tasks reflecting real-
world structuring and abstraction. This includes best-in-class per-
formance on PubMedQA among LLMs with the same parameter
count. On production tasks for real-world records, LLMD signifi-
cantly outperforms both GPT-4 and John Snow Labs’s “John", which
advertises use on medical records. Importantly, we develop strong
evidence that today’s LLMs must be trained on labeled records to
accurately model patient health and care — those trained on general
medical knowledge and unlabeled records alone cannot consistently
contend with the complexity and nuances of records.

This paper proceeds as follows: Section 2 describes the Pic-
nicHealth platform. Section 3 introduces our tasks, training dataset,
and context generation procedures. Section 4 discusses validation
mechanisms. Section 5 evaluates LLMD against alternatives on
common benchmarks, tasks pulled from our production data, and
investigates performance on infrequent but clinically important
long-tail concepts.

2 PICNICHEALTH PLATFORM OVERVIEW

PicnicHealth’s platform works on behalf of patients to retrieve and
manage their medical records, regardless of the format they are
in or the facility holding them. This includes electronic records
as well as paper-based records, which account for a substantial
portion of patient data. Paper records are of particular importance
for visits to providers practicing outside of large health systems,
for historical records produced before Electronic Health Records
(EHRs) were ubiquitous, and for facilities whose systems impede
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Figure 2: The ability to interpret medical records is critical for LLMs
that model patient health using the data available today.

sharing. The platform is format-agnostic under its base case support
for processing physical copies of records. It is also facility agnostic
based on the legal right patients have to access records on request.

Our platform offers products for patients and researchers. For
patients, we retrieve records, organize them, visualize contents,
and enable sharing with their doctors. These tools help patients
manage day-to-day care and are the basis for concierge care coor-
dination services. For researchers, we offer products that improve
the speed, flexibility, and cost of observational studies supporting
new therapies. Advantages come from better patient recruiting,
more effective data collection, and transparent data management
throughout the lifecycle of a study.

3 TASKS & TRAINING DATA

This section introduces the tasks we use to train LLMD and pro-
cess the records on our platform. Any task performed by our LLM
can also be performed by a human CDA using software developed
internally. This software implements a heavily optimized user ex-
perience to ensure efficiency and consistency among CDAs. CDAs
perform training data collection, model auditing, label correction,
and inter-rater reliability studies against clinicians.

As detailed in Section 4, our LLM is able of doing a substantial
portion of work on incoming records automatically to the same
accuracy as CDAs. In cases where our validation system flags tasks
that need extra scrutiny, or when data is intended for sensitive use
cases like a regulatory filing, CDAs always complete the task, and
the LLM outputs act as a tool to make them more efficient.

3.1 Structuring Tasks

Even once available, the challenge of turning medical records into
usable, reliable data is daunting [12, 13]. Issues found in their pages
include contradictions, errors, omissions, and even notoriously
difficult-to-read handwriting for paper records. Pervasive problems
like the misdiagnoses in Section 1 can happen for reasons as mun-
dane as a provider choosing the wrong option from a drop down
list in EHR software. Or, a Medication List section that is intended
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Figure 3: The workflow implemented by our internal software to structure and abstract records sourced electronically and on paper.

to be a universal source of truth may combine patient recollections
with provider sourced data. Even aligning data representing the
same real-world concept is a challenge, and though ontologies such
as SNOMED, RxNorm, and the ICD standard are intended as solu-
tions, coding standards change over time, and across facilities and
providers [14-16].

For all of these reasons, getting data out of records and into a
structured form suitable for modeling - in our case, following the
OMOP Common Data Model - requires more than just digitization
for paper records or parsing for electronic records. Our structuring
tasks implement the following steps (Figure 3):

e OCR/CCDA Parsing - Accurate text is critical to all down-
stream processing. For paper records, we apply an OCR
model trained on 6.2B annotated words and bounding boxes,
capturing the layouts, styles, artifacts, and language com-
mon in our records. We access electronic records in the
Consolidated Clinical Document Architecture (CCDA) for-
mat and parse them to access text directly [17] 1.

e Document Labeling - We tag all incoming records with
document-level metadata. This includes document bound-
aries, e.g. since facilities often consolidate information for
many visits, as well as attributes like visit length and type,
provider identity and specialty, and normalized facility
names.

e Sectioning - We then subdivide documents into sections,
which offer fine-grained provenance information. This step
includes finding section boundaries based on arbitrary con-
tents and, for paper records, physical layouts. We then code
section types such as Progress Note, Pathology Report, etc.

INot to be confused with clinical data abstractors (CDA)

e Mentions-Processing - Similar to named entity recog-
nition (NER) [18], we identify clinical concepts, their at-
tributes, and the relationships that link them. We do this
for medications, lab tests, vital signs, procedures, and con-
ditions. Example attributes include reference ranges for
labs, doses for medications, etc. We then align the resulting
entity mentions to standard ontologies.

3.2 Abstraction Tasks

While structured data reflects what is written, our abstracted data
represents the clinical view of a patient’s medical history. For exam-
ple, a structuring task will recognize and normalize every mention
of a disease modifying therapy (DMT), but those named-entities
alone are not enough to confidently say when a patient started the
drug, when they stopped, and why [19].

This is apparent in Figure 4, which shows snippets fed to our LLM
as context when abstracting the treatment course for a medication.
We see that the most recent note captures a discussion of bladder
control difficulties alongside two medications. It definitively notes
the date that the DMT was stopped, which is confirmed by the
prior note. However, only the oldest note calls out the patient’s
worsening side effects to give us the stop reason, while leaving
unclear what the date of final administration would be. In this
example, all three notes must be examined together to model the
treatment course — no one note nor its structured data tells the full
story — and this need motivates abstraction.

Our approach to designing abstraction tasks started from the ob-
servation that clinicians intuitively abstract medical information as
they read records. Through user study, we discovered that the key to
abstracting a nuanced treatment course lay in supplementing struc-
tured data with a provider’s clinical knowledge and provenance
information to contextualize and filter what was written.



New tasks — to be performed by either CDAs or LLMD- are
defined by configuring the desired output, the input source material,
and the protocol for abstractors to follow. The output is a target
concept, e.g. a drug concept code, and one of three data types:

o Distinct attributes, such as a primary diagnosis.

e Multi-occurrence episodic events, such as pain crises or
clinical relapses.

o Eras that capture spans of time associated with a clinical
status, such as when a patient was on a medication.

The inputs define what context from the patient’s full set of records
to consider when abstracting, which is critical to consistency, effi-
ciency, and auditability. Inputs are configured based on metadata,
such as document type, date, and provider specialty, as well as
search hits for concepts related to the output. The protocol consists
of definitions, guidelines, and examples to mold clinical expertise
into a rigorous, repeatable process. They are designed collabora-
tively by clinicians and researchers, and can include multiple rounds
of training, assessment, feedback, and revision.

In our prior example, drug era abstraction would be instanti-
ated with the DMT’s associated RxNorm code and an Era datatype;
source material would be configured to look to Progress Note sec-
tions from neurology documents, as well as hits of any DMT associ-
ated with Multiple Sclerosis (MS); and the protocol would provide
guidelines for navigating ambiguities, such as contradictions be-
tween primary care and specialist providers, or guidelines on how
to identify uncertain drug start dates.

Ultimately, for LLMD, abstraction tasks enable us to train a
large language model to mimic clinicians. When a new task is
launched to CDAs at scale, their outputs become the labels for
training. The configuration of input source material is the basis for
LLM context generation. And, the abstraction protocols provided
to CDAs become the starting point for task prompts.

3.3 General Medical Knowledge Tasks

Training LLMs for general medical knowledge is well studied, and
for completeness, we refer readers to procedures used in Open-
BioLLM [2] and Med-Palm2 [20]. In our fine-tune of 11ama2, we
focus on public source material related to clinical knowledge and
synonym data that helps navigate different coding styles.

3.4 Longitudinal Task Labels

Table 1 categorizes the 86 tasks used to train LLMD today. Fig-
ure 5 provides an example prompt for drug NER structuring, while
Figure 6 provides an example for drug era abstraction. Each task
is paired with labels collected from our corpus, which contains
millions of annotated records. These have been both structured
and abstracted for research questions associated with 60+ study
datasets. Our records are sourced from 100k+ care sites in aggre-
gate. Individual patients have records from 10 facilities on average,
but as many as 140 for some patients. On average, patient data
spans 10 years, and 20 years at the 90th percentile. Disease specific
completeness definitions determine when our data fully documents
a patient’s primary condition over time, e.g. at-least one neurology
office visit per 18 months for MS; today our data contains 5 years
of complete documentation per patient on average. Data volume is
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# Task % Training

Capability Types  Samples
General Medical Knowledge 17 29%
Structuring - Metadata & Provenance 14 3%
Structuring - Conditions 18 31%
Structuring - Medications 12 9%
Structuring - Labs 7 4%
Structuring - Vital Signs 6 7%
Abstraction - Conditions 4 4%
Abstraction - Medications 8 13%

Table 1: For each stage of our structuring and abstraction processes,
we perform multiple tasks in sequence, e.g. finding vital sign names,
and then value for each vital sign name in a second pass.

substantial: Paper records are on average 30 pages long, though we
have retrieved records as long as 24,000 pages for heavy users of the
healthcare system with complex diseases; meanwhile, we electroni-
cally retrieve 290 files per patient on average; and for image data,
we retrieve on average 5,000 image slices per patient. Labeling was
conducted over a period of approximately 10 years by a workforce
of several thousand CDAs in sum, and has generated more than
350M labels.

3.5 Task Decomposition and Context
Generation

The capabilities in Table 1 contain multiple task templates. These
arise in part when we decompose complex outputs into easier tasks
that form dependency chains. For example, with vital signs we
use one task to first identify all vital sign names within a section,
another to find attributes given a name, and finally a last task to
normalize units and align names to an ontology. This decomposition
injects a helpful inductive bias between the measurement name and
its attributes — given “Body Weight", the model is more likely to
latch onto numbers in typical ranges for pounds and kilograms than
those for degrees Farenheit. Though simple, such induction greatly
improves tolerance to the variations and artifacts we encounter
across facilities, e.g. when tables are intermingled with narrative
text in unexpected ways.

Beyond exploiting instruction fine-tuning to shape inductive
biases, we engineer the context of each task carefully. Similar to
REALM [21] and RAG [7] we build context by finding relevant
snippets of records and concatenating them into our prompt. As
discussed in Section 3.2, context retrieval is configurable based
on metadata and search terms, and we implement it today using
ElasticSearch. We found that this system design struck the best
initial tradeoff between performance and flexibility, allowing us
to quickly iterate task design. In the future, we expect to explore
end-to-end training [22], though we note that it comes with more
complex system interdependencies.

4 SAFETY AND QUALITY CHECKING

Both LLMD’s outputs and CDA labels pass through several layers of
validation before they are shown to users or included in a research
dataset. This section summarizes them.
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### Snippets
7293 - Progress Note on 2019-12-02 Neurology, found concepts [ocrelizumab ]:
HISTORY OF PRESENT ILLNESS :
first_name was last seen on 5/31/2019 first_name has decided that since starting the DMT, she has been on a "downhill slide”. She has received 5 doses first_name
reports feeling worse after each dose and is overwhelmed by the side effects. She presents today using her walker to assist with

7296 - Progress Note on 2020-12-09 Neurology, found concepts [ocrelizumab ]:
HISTORY OF PRESENT ILLNESS:
first_name was last seen on 06/02/2020 first_name_1 her most recent dose of DMI was on 05/31/2019, she has been off DMT since that time. first_name feels that with
oxybutynin her bladder control is better at night, but she still experiences frequency (probably

7305 - Progress Note on 2021-06-30 Neurology, found concepts [ocrelizumab]:
first_name was last seen 6/02/2020. She has been off DMT since 5/31/19, when she received her most recent dose of DMT. first_name has some bladder urgency first_name
wears incontinence pads daily. She takes oxybutynin ER 15mg before bed but still wakes 1-2 times per night to void. She continues to use stool softeners to
help her move her bowels daily.

Figure 4: Neurology notes provided as context to a drug era task that includes stop reason for an MS patient. We first turn to notes from specialist
physicians for the most definitive account of the disease. Here, the most recent two notes co-mingle a discussion of worsening bladder control
with a definitive date the patient stopped the DMT. The oldest note makes a link between consistent worsening feelings and the drug, which

provides the stop reason. Only with these three notes together can we piece together the era end date and stop reason.

### Section:

IMPRESSION :

She continues symptomatically and I'm going to reissue a prescription for
prednisone 1000 mg a day for 5 days. I am hoping this will quiet down her
symptomatology. If she continues with ¢ she will contact me. We had a long
discussion about what to do for her. She has decided she would like to switch
from Copaxone to DMT and I think this is a good choice. She will have blood
today for JC virus and vitamin D level. She will help the paperwork for DMT and
I will see her in followup in January. I have asked her to call as needed.

### Instructions:

In the section above, find all unique mentions of these concepts:
- Avonex (RxNorm 153326)

- Copaxone (RxNorm 135779)

- Ocrevus (RxNorm 1876381)

- Tecfidera (RxNorm 1373484)

- DMT (RxNorm DMT_CODE)

- Zeposia (RxNorm 2288407)

- dimethyl fumarate (RxNorm 1373478)
- rituximab -abbs (RxNorm 2105824)

- teriflunomide (RxNorm 1310520)

Output a list of JSON objects like:
[
{
"concept”: "Hydrea (RxNorm 151871)",
"other_fields ": {

) s
]
With these optional other fields:
- ANY__SUBJECT (who the mention refers to)
- DRUG__INSTRUCTION (the frequency a patient is to take a medication; often
daily , every other day, etc.)
- DRUG__STOP_REASON (why the patient stopped taking the drug (a SNOMED item
and code))
- DRUG_STRENGTH (the drug dosage; often in mgs or mg/mL)

Figure 5: This task implements clinical named entity recognition,
one of our simpler structuring tasks.

4.1 Uncertainty-Driven Manual Review

The goal of LLMD is to automate record processing, while main-
taining the same accuracy as clinicians. Even for them, we observe
that some records are far more difficult to understand than others
and the reasons are complex. For example, a poor quality scan of
a decades-old handwritten note likely induces more mistakes due
to confusion about the text than the output of a modern, widely
used EHR system. At the same time, we see that modern EHRs
produce large amounts of redundant information, spreading the
most important data sparsely over many pages.

For these reasons, we train secondary uncertainty models to
classify when the outputs of LLMD are likely to need a second-pass
review. Today, these are analytic classifiers, not LLMs, and take into
account features such as LLMD’s logits, its outputs, information

### Snippets

7493 - Progress Note on 2011-06-16 Psychiatry , found concepts [DMT1]:
use street drugs, doesn't smoke; has caffeine in a.m.
MEDICAL HISTORY Is on an ex perimental medication (infusions of DMTI1)
for MS under the care of Dr Fox and is doing fairly well with his MS.
Has had partial

7485 - Progress Note on 2014-02-17 Neurology, found concepts [DMT1]:
HPI:
Mr. last_name is here for Camms EXT Visit Month 36. His last
DMT1 was Month 12 in 1/25/2010. Reports c/o pneumonia
(start 2/3/2014). Seen by PCP. Chest X-ray abnormal. Started Prednisone 50
mg po qd, Zithromax Z pak,

7498 - Radiology Report on 2014-02-20, found concepts [DMT2]:
MRI BRAIN WITH AND WITHOUT CONTRAST: 2/20/2014
HISTORY: Multiple sclerosis. There is no indication the patient is on DMT2
COMPARISON: Head CT 03/18/2011 (Seton Northwest Hospital), report, a
previous outside MRI has been

7483 - Progress Note on 2014-08-19 Neurology, found concepts [DMT1]:
HPI:
Mr. last_name is here for CAMMS Extension Visit Month 42. Last
DMT! January 2010. No PE to be done today. No new symptoms,
no relapse. Informed consent given, all questions answered. Signed. Copy
to patient. No new neurologic

### Instructions:
Predict the expected drug eras after observing these snippets.

Use this format for "start_date’ and "end_date":
{"date": "YYYY-MM-DD",
"precision’: "DAY|MONTH|YEAR",
"specificity ": "KNOWN DATE|TRUE_DATE"}.

Choose "TRUE_DATE' if the patient started or ended the drug on that date.
Otherwise , choose "KNOWNDATE" for the first or last recorded usage of
the drug.

Return a JSON list of drug eras. Each drug era should use

the format

{
"concept_name": "..."
"start_date "
"end_date": { s
"stop_reason": PN

}

For this task you should consider the following concepts:
- DMT! (synonyms BRAND_NAME1)
- DMT2 (synonyms BRAND_NAME2)

Figure 6: This is an example of a drug era task for medications
associated with MS.

about input text, OCR quality, and document metadata. They are
trained to detect when outputs fall short of gold standard labels,
while accounting for acceptable variations between CDAs. We audit
routing decisions continually in production by randomly selecting
extra tasks for review by CDAs - the resulting dataset can then
compared to the uncertainty-model’s expected performance. Should
performance slip, data can be reprocessed and the model retrained



or recalibrated. We remark that these models are highly accurate,
though their implementation is not discussed in detail in this paper.
We note that abstraction tasks for research studies are not pro-
cessed in a fully automated fashion today. This is because they are
often intended for use in research studies that require human veri-
fication to meet regulatory standards. LLMD’s abstraction outputs
are instead hypotheses that can speed CDAs’ work and we measure
LLMD’s impact in CDA task-time for a fixed accuracy bar.

4.2 Rules-Based QC

All outputs of LLMD and CDA work are subjected to rules-based
quality control (QC) for data conformance and plausibility. Confor-
mance checks look to ensure basic correctness, e.g. that dates are
valid, codes are present in an ontology, and attributes that cannot be
null are indeed populated. Plausibility rules incorporate more clini-
cal and disease-specific knowledge, for example that a DMT does
not start before a confirmed diagnosis date, or that conditions only
possible in females are not associated with male patients. When a
rule violation is detected, it is logged with a *warn’ or ’error’ prior-
ity level. Errors are prevented at point of entry, while warnings are
routed to an escalation workflow for manual correction or suppres-
sion. Both general and disease-specific QC rules are created and
continually expanded by a team of epidimiologists, clinicians, and
biostatisticians. An example set our plausibility rules in production
today is shown in Table 2.

4.3 Agreement and Accuracy

Labels assigned or verified by CDAs are subject to additional quality-
checking (QC) tasks that ensure consistent performance over time
and among CDAs [23]. For abstraction, a second blinded task is
performed based on a configurable sampling rate. In cases of dis-
agreement, the result is adjudicated by a third CDA. We also per-
form a smaller number of random audits by clinicians with a higher
level of expertise than CDAs to ensure consistent results are in-
deed correct. For structuring tasks, which involve smaller units of
work and less clinical judgment, QC tasks are not blinded and are
performed by team members identified to be high performers. All
QC sampling rates are configurable by percent of data volume, by
concept, by CDA performance level, and by study in the case of
research datasets.

5 LLMD TRAINING & EVALUATION

In this preprint, we present results from a small version of our
LLM fine tuned from Meta’s Llama2-7B foundational model. These
results allow us to characterize our methods relative to others in
the literature, though we note that they do not represent top-line
system performance nor the most sophisticated foundational model
in production today.

Our evaluation model is trained by performing a full fine-tuning
of all weights. We use a notably larger dataset than in common
practice [24]. This is based on the observation that we are not just
trying to encode additional knowledge in the model, but that we
must build tolerance to an unusual set of artifacts that are absent
from the pretraining dataset and evident across the long-tail of our
dataset. We train for a single epoch on 5B tokens, regularize using
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Cond. ‘ Type ‘ Plausibility Rule Description
PNH Err

PNH breakthrough hemolysis occurs
within a drug era

LDH collection date +/- 3 days from
breakthrough hemolysis start date
Acute kidney injury era has a plausi-
ble duration (> 100 days)

PNH Warn

PNH Warn

PNH Warn | PNH drug treatment eras should not
overlap

PNH Warn | Eculizumab dose should not be less
than 600 mg

Table 2: A subset of plausibility rules applied during abstraction tasks
for patients diagnosed with Paroxysmal Nocturnal Hemoglobinuria
(PNH). These rules are continually expanded by a team of epidemi-
ologists, clinicians, and biostatisticians.

loss smoothing [25], and linearly ramp loss from 0 to 2.0e > over
500 steps before linearly decaying back to 0.

We evaluate LLMD from several angles. We first compare its
direct outputs on common benchmarks, including MedMCQA [26]
and PubMedQA [27]. We then assess performance on a held-out
sample of tasks and data from our production systems, which better
characterize real-world applications operating on a wider, more di-
verse patient population than popular benchmarks [28]. The results
of this analysis illuminate performance characteristics on the criti-
cal path to deployment. Finally, we evaluate LLMD’s performance
on long-tail concepts that are infrequent but clinically important.

5.1 Common Benchmarks

Both MedMCQA and PubMedQA’s training datasets are included
in LLMD’s General Medical Knowledge tasks, allowing us to report
zero shot results without modifying LLMD’s training methodol-
ogy or dataset. Figure 7 shows leading zero shot accuracies on
MedMCQA, a suite of challenges mimicking U.S. medical entrance
exams as well as zero shot performance on PubMedQA. Compari-
son results come from the most recent written analysis by the Open
Medical LLM leaderboard for LLMs also trained from 7B parameter
foundational models [29]. We also include results for the production
version of GPT-4, which we analyze in more detail in Section 5.2.

LLMD-7B outperforms all comparable models on PubMedQA,
and performs close to GPT-4’s production model, which is much
larger and implements a mixture of experts model. On MedMCQA,
its performance is similar to the most powerful comparable models,
which undergo extensive training and knowledge distillation for
medical question answering. This strong performance is notable
since our training data mix heavily emphasizes records structuring
and abstraction, while following a lighter-weight approach to gen-
eral medical knowledge. One explanation is that the our real-world
records data not only encapsulates similar information (e.g. in the
notes of doctors or explanations to patients), but also includes many
examples of how medical knowledge manifests in data collected
for patients. We find support for this latter case in Section 5.2.
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Figure 7: LLMD performs significantly better on the types of tasks needed to structure and abstract medical records in production.

5.2 Production Workload Accuracy

Our production tasks allow us to analyze the strengths and weak-
nesses of models when working with directly-useful tasks and a
broad, representative patient population. In this section, we com-
pare LLMD-7B to OpenAI's GPT-4 production model [6], a best-
in-class and heavily used general model, which performed best
among the frontier models we evaluated. We also compare against
John Snow Labs’s “John" LLM (JSL-J), a domain-specific model that
claims state-of-the-art performance and is advertised for use inter-
preting medical records [30]. JSL-J is trained to incorporate struc-
turing approaches considered among the best in the lifesciences
industry. We report accuracy against gold standard labels assigned
and validated by CDAs.

Overall Performance. First, we compute an overall comparison
score based on a sample of the structuring and abstraction tasks in
Section 3. Figure 7 shows that LLMD-7B handily beats both com-
parison models, each of which have much larger parameter count.
Given our fine tuning approach, this result suggests that powerful
off-the-shelf models do not handle structuring and abstraction tasks
well without being explicitly trained on them. We note that both
comparison models are able to solve some examples satisfactorily,
but that aggregate performance leaves room for improvement. Con-
trasting this result with that of Section 5.1, leads to an important
observation: training on general medical knowledge may not
be enough to deploy medical LLMs that must model a patient’s
health and treatment over time.

Task Type. Figure 7 also shows performance broken out by
structuring and abstraction. LLMD-7B beats both GPT-4 and JSL-J
in both categories. We observe that GPT-4 performs better than
JSL-J on structuring tasks, showing off the power of its strong
pattern matching capabilities. We hypothesize that this is partly
due to GPT-4’s stronger foundational model, since we observe JSL-J
struggling to following the instructions of our prompts, which GPT-
4 handles well. GPT-4 also performs better than JSL-J on abstraction
tasks, supportng the belief that domain knowledge reflected in

benchmarks like PubMedQA is not enough to teach an LLM to
characterize patient health.

Examining individual responses, we also observe that LLMD-7B’s
responses are more internally consistent than comparison models.
In one example, JSL-J identifies a patient’s height value correctly as
“6" but improperly assigns the “inches" unit, which also appears in
the LLM context window. While that choice is close — inches are a
valid unit for height - the result is implausible given the patient age.
This type of inconsistency is something that LLMD-7B’s training
dataset directly combats: it includes a massive number examples of
vital signs for people in various states of health, as well as enough
information to associate them with age, health, etc.

We see strong evidence that LLMD-7B learns these connections.
While it may on occasion produce implausible results — motivating
the layers of QC in Section 4 — we observe them far less often than
with comparison models. The gap is most apparent on tasks that
require manipulating lab test codes and medication identifiers. In
these cases, we observe a substantial rate of hallucinated codes
by GPT-4 and JSL-J. Examples of this type provide evidence of
the importance of training on data showing medical knowledge
manifest in records, not just on the written ideas themselves.

Figure 8 annotates some tasks based on whether they require
nuanced reasoning. These include tasks that are interpretive in
nature, for example to determine whether a visit was in an inpatient
or outpatient setting. Nuance also comes into play often when
records contain contradictory information that requires subtle or
disease specific adjudication. For example, should a medication be
found in a Medication List, but a narrative Progress Note from the
same day says that medication was stopped, an LLM must learn to
defer to the Progress Note. Interestingly, we find that GPT-4 does
well, but that even with few parameters, LLMD-7B significantly
outperforms it.

A few specific examples demonstrate that even the nuances of
mundane-seeming metadata can lead to poor application-level be-
haviors. In many failure cases, we saw comparison models confused
by the meaning of dates in notes — these tasks are also categorized
in Figure 8. Looking into the records themselves, we see dates and



Abstracted
Measurement Name .
Variable Type

Type 2 RBC clone size Occurrence
Monocyte clone size Occurrence
Granulocyte clone size Occurrence
Total RBC clone size Occurrence
Type 3 RBC clone size Occurrence
Lactate dehydrogenase

[Enzymatic activity/volume] | Occurrence
in Serum or Plasma

Table 3: A PNH Marker Panel provides an example of infrequent but
important measurements. These tests are performed once when a
patient is diagnosed; PNH occurs in fewer than 10 in 1M people.

times documenting facility workflows, such as when notes are writ-
ten, amended, signed, or when test samples are sent off to a lab,
returned, etc. Identifying dates using NER is easy, but to interpret
records, models must learn the patterns of this workflow informa-
tion, which do not appear in pre-training data. We observe similar
failures navigating the names of personnel listed in records.

For a patient-facing application built on these outputs, this means
an LLM will produce plausible results that don’t match patient
expectations. Patients are quick to recognize their doctors and
compare application outputs to their recollection of physical visits;
getting these nuances wrong has the potential to undermine trust
in these and other outputs of the LLM. We note that LLMD-7B does
categorically very well on this type of metadata, providing another
example of how training directly on real-world patient data helps
us build far more trustworthy applications.

5.3 Long Tail Performance

In this section, we examine LLMD’s performance on two specific
sets of labs: the top-100 most-common and 100 tests deemed by our
clinical team to be both rare and clinically important, which we
refer to as long-tail labs. An example of this latter set are measure-
ments associated with the marker panel administered to patients
diagnosed with PNH (Table 3). Given the disease’s incidence of less
than ten per million people, the frequency of these tests is very low
in most data samples, but their importance high.

In data audited over the course of April, 2024, we find preci-
sion and recall on our top 100 labs strictly above those computed
from agreement studies between two CDAs performing manual
abstraction. This indicates that LLMD’s outputs after validation
are as-good or better than a trained human abstractor. Among the
set of long tail labs, we find that 60 of the 100 appeared more than
10 times in our audit sample - of these, only 15% of these had an
F1 score below 0.80, suggesting that performance in the long tail
is good, but not guaranteed. In practice, when we detect this, we
are able to flag sections for patients with the associated disease for
manual review by CDAs, implement QC rules to ensure we find
expected measurements, and ultimately retrain LLMD.

We have experimented both with upsampling and data augmen-
tation to shore up long tail concepts, and for both methods find that
LLMD responds smoothly. We find these dynamics supportive of
our claim that a large labeled dataset is absolutely critical to good
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performance: precision and recall on these obscure concepts is not
a given even among the most powerful models, but we do see that
LLMs are well-behaved enough that model blindspots are discover-
able and addressable. Our results also highlight how important the
input of clinicians is, and suggests that disease-by-disease rollout
is likely to produce safe results and incremental generalization for
LLMs.

6 CONCLUSION

This paper presented LLMD, an LLM capable of modeling patient
health and treatment over time from the data available today. We
showed that training on tasks and real-world data from existing
patient records is necessary: even the most powerful and the most
knowledgeable models struggle when working with records. This
makes the return-on-investment of building applications on general
models unfavorable when they must reflect patient health.

Our results are most exciting because LLMD is operating at
levels that are improving patient care today. User feedback demon-
strates patients discovering new things about their health history,
advocating for the highest standards of care for themselves, and
making better use of precious time with their doctors. Researchers
are working the same underlying data, contributed by willing pa-
tients who are highly motivated to improve treatment options for
themselves and others. To date, this has produced 60+ datasets
covering 50+ rare diseases, and has been the basis for compelling
evidence submitted to the FDA.

From a technology standpoint, we demonstrated a feedback loop
that allows us to improve LLM performance when modeling impor-
tant and sometimes obscure aspects of patient health. The systems
that make up that feedback loop, as well as the experience designing
and collaborating with experts puts LLMD in a leading position to
deliver new insights about safe, high accuracy healthcare LLMs.
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